Processing Methods Tested

- a. standard processing (baseline case)
- b. fixed aerosol model pair (control case)
- c. 5x5 averaging of Lt Lr(765) and Lt Lr(865)
- assumes aerosol type and concentration vary on scales greater than 5km (20km for GAC)
- possibility of spreading sub-pixel clouds (high τ_a) into otherwise uncontaminated pixels
- d. use models from case c, but leave Lt as measured
- smooth aerosol type, but leave concentration unchanged
- requires two passes through atmospheric correction
- e. 5x5 "epsilon" averaging
- similar to case d, but can be done in 1 pass

Epsilon Averaging

define NIR aerosol radiance at pixel i for wavelength λ as:

$$L_a(\lambda,i) = [(L_t - tL_f)/t_{O3} - L_r]/t_{O2}$$

given a scan/pixel window centered on pixel x, containing a total of n unmasked pixels, compute mean $L_a(\lambda)$ at x as:

$$\langle L_a(\lambda, x) \rangle = 1/n \Sigma L_a(\lambda, i)$$
, i=1,n for λ =765 and 865nm

compute mean epsilon at x as:

$$\varepsilon_{x} = \langle L_{a}(765,x) \rangle / \langle L_{a}(865,x) \rangle$$

now compute a new $L_a(765,x)$ which would yield the mean epsilon when combined with the original $L_a(865,x)$:

$$L_a'(765,x) = \varepsilon_x L_a(865,x)$$

and reconstruct the TOA radiance at 765nm:

$$L_t(765,x) = [L_a'(765,x) t_{O2} + Lr] t_{O3} + tL_f$$

SeaWiFS nLw(443), Comparison of Smoothing Methods

a. Standard Processing

b. Fixed Model (c50, t99)

c. NIR 5x5 Averaging

d. Fixed Models from case c

e. Epsilon 5x5 Averaging

nLw(443) Difference Distribution TOA Smoothing (c) versus Epsilon Smoothing (d) Relative to Fixed Model Case (b)

5x5 Averaging of Lt(765) and Lt(865)

5x5 Averaging of Epsilon(765,865)

nLw(443), Standard Processing

nLw(443), NIR 5x5 Averaging

nLw(443), Epsilon 5x5 Averaging

Lower Bounding Model, Standard Processing

Lower Bounding Model, Epsilon 5x5 Averaging

Upper Bounding Model, Standard Processing

Upper Bounding Model, Epsilon 5x5 Averaging

Angstrom(510,865), Standard Processing

Angstrom(510,865), Epsilon 5x5 Averaging

$\tau_a(865)$, Standard Processing

$\tau_a(865)$, Epsilon 5x5 Averaging

Chlorophyll, Standard Processing

Chlorophyll, Epsilon 5x5 Averaging

Chlorophyll Difference, Smoothed - Baseline

Chlorophyll Difference Distribution Smoothed - Baseline

Distribution of the Ratios of Random Numbers

nLw(443) Difference Distribution Smoothed - Baseline

